ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS

Course Code	19EC3302	Year	II	Semester	I
Course	Program	Branch	ECE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous	30	Semester	70	Total Marks	100
Internal		End			
Evaluation		Evaluation			

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Characterize and analyze BJT amplifiers at low and high frequencies
CO2	Determine MOSFET amplifier performance at low and high frequencies.
CO3	Adapt different models of BJT and MOSFET circuits for improving the IC
	performance
CO4	Design single stage and multistage differential amplifiers using MOSFET.

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength o	of corr	elatior	ıs (3-H	ligh, 2	: Medi	ium, 1	:Low)							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		2	2	1
CO2	3	3	2	2	2			1	1	1		2	2	1
CO3	3	3	2	2	2			1	1	1		2	2	1
CO4	3	3	2	2	2			1	1	1		2	2	1

Unit No.	Contents	Mapped CO
I	Bipolar Junction Transistors: Device structure and physical operation, current-voltage characteristics, the BJT as an amplifier and as a switch, BJT circuits at dc, biasing in BJT amplifier circuits, small signal operation and models.	CO1
II	MOS Field-Effect Transistors: Device structure and physical operation, current-voltage characteristics, MOSFET circuits at dc, the MOSFET as an amplifier and as a switch, biasing in MOS amplifier circuits, small signal operation and models.	CO2
III	IC Design Philosophy, Comparison of the MOSFET and the BJT, IC biasing-current sources, current mirrors and current-steering circuits, current-mirror circuits with improved performance.	CO3
IV	Single Stage MOSFET Amplifiers: Estimating 3dB frequency of amplifiers, Basic MOSFET amplifier configurations, MOSFET internal capacitances and high frequency model. Low Frequency and High Frequency Response of Common Source, Common Gate and Common Drain Amplifiers.	CO2
V	Differential Amplifiers: The MOS differential pair, small-signal operation of the MOS differential pair, other non-ideal	CO4

characteristic	cs of	MOS	differentia	ıl amı	olifier,	the	MOS
differential	amplifi	er witl	h active	load,	multis	stage	MOS
amplifiers.							

Learning Resources

Text Books

1.Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

Reference Books

- 1. BehzadRazavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.
- 3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

http://www.faadooengineers.com/threads/4615-Electronic-Devices-and-Circuit-Theory-Boylestad-and-Nashelsky

https://docplayer.net/53934331-J-b-gupta-electronic-devices-and-circuits.html